博客
关于我
PAT(Basic Level)1001 (3n+1)猜想
阅读量:558 次
发布时间:2019-03-09

本文共 809 字,大约阅读时间需要 2 分钟。

1001 宝藏大问题(3n+1)猜想(15 分)

卡拉兹(Callatz)猜想:对于任何一个正整数 n,如果它是偶数,那么将它除以2;如果它是奇数,那么将 (3n + 1) 除以2。通过不断重复这个过程,最后肯定会在某一步得到 n=1。

对于给定的任一不超过 1000 的正整数 n,您需要计算从 n 计算到 1 所需的步骤(即砍多少下)

我们的任务是编写一个程序,接受输入 n 的值,计算并输出所需步骤的数量。下面是解决方案的简要说明:

### 方法思路我们可以通过模拟过程来解决这个问题。具体步骤如下:1. 初始化步骤计数器到 0。2. 检查当前数是奇数还是偶数: - 如果是偶数,将其除以 2。 - 如果是奇数,将其转换为 (3n + 1) 并除以 2。3. 每次操作后递增步骤计数器。4. 当结果等于 1 时停止,返回步骤计数器的值。

解决代码

#include 
using namespace std;int getNum() { int a = 0; cin >> a; return a;}int count(int a) { int i = 0; while (a != 1) { if (a % 2) { a = (3 * a + 1) / 2; } else { a = a / 2; } i++; } return i;}int main() { int a, i; a = getNum(); i = count(a); cout << i << endl;}

### 结果示例输入:7输出:11

通过上述方法,我们可以轻松计算出从任意正整数 n 到 1 所需的步骤数。这种方法简单直观,能够快速解决问题。

转载地址:http://slvpz.baihongyu.com/

你可能感兴趣的文章
nrm报错 [ERR_INVALID_ARG_TYPE]
查看>>
NS3 IP首部校验和
查看>>
NSDateFormatter的替代方法
查看>>
NSError 的使用方法
查看>>
NSGA-Ⅲ源代码
查看>>
nsis 安装脚本示例(转)
查看>>
NSJSON的用法(oc系统自带的解析方法)
查看>>
nslookup 的基本知识与命令详解
查看>>
NSNumber与NSInteger的区别 -bei
查看>>
NSOperation基本操作
查看>>
NSRange 范围
查看>>
NSSet集合 无序的 不能重复的
查看>>
NSURLSession下载和断点续传
查看>>
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>